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Abstract

We use a generalized frame of reference in the polar sense and the connected non-holonomic
techniques to study superfluids in general relativity and obtain a precise analogy between superfluids
and Cosserat continua, from both the descriptive and the structural points of view.
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1. Introduction

In general relativity the standard notion of frame of reference is generally assumed to be
a local orthogonal 1 x 3 structure (1 = time and 3 = space) (see [1, Chap. IV]). so that
it is characterized by a unit time-like vector field -y or by the congruence of its flow lines
r.

From a kinematical point of view, I" defines a standard continuum, whereas the space-
time gradient of ¥ summarizes its three fundamental characters: 2C; (4-acceleration), wiy
(proper vortex) and k;i ( proper deformation rate).

The preceding characterization can be generalized, in a natural way, according to the
theory of polar continua [2], by considering a local non-orthogonal 1 x 3 structure. More
precisely, in this context, the space—time is supposed to be provided with two independent
geometrical ingredients:

(1) atime-oriented congruence I', with a unitary tangent vector field ~:

~oy=—I, hH
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(ii) a space-like distribution of 3-planes: z, non-orthogonal to =y, namely a second time-
like vector field 77 (tangent to the normal congruence to such 3-planes) which, without
any loss of generality, can be chosen so that

v-n=-1 2)

The (I, > ) non-orthogonal quasi-product structure can be introduced, more generally,
directly in a (non-Riemannian) differential manifold, by means of two vector fields — one
contravariant: y® and the other covariant: n,, both defined up to a multiplicative scalar
factor and the condition: y*n, # 0 [3]. However, the most interesting situations belong to
the Riemannian case.

Examples of this structure occur, for instance, in the ordinary three-dimensional space
when one studies the problem of the evolution of a surface (wave) with the associated rays,
generally non-orthogonal to the wavefronts, as well as in the dynamics of a holonomic
system, with time-dependent constraints. Here in fact the events space, E, 4, is naturally
provided with the non-orthogonal structure, defined by the temporal lines x® = var. and
the n-manifolds x° = const., respectively [4]. Of course, in both the considered cases, the
£ -distribution is integrable, and the framework is non-relativistic.

Condition (2) does not exclude the possibility of isotropy for the field np: m) - n = 0 (null
congruence), a case in which, for every point E € V,, the 3-plane s tangent along 7) to
the light cone.

Therefore, the structure of generalized frame of reference can be used also to study null
congruences: now the field 7 defines the frame of reference in the standard sense, and, in
addition, we have a light-like field I = 1), with the relative normal 3-plane by , of parabolic
type, containing the vector I (see [5]). However, the lines of the field 7 constitute a second
time-like congruence r , different from I”; so, at least from the descriptive point of view,
we have a first analogy between generalized frames of reference and superfluids or binary
Sfluid mixtures, described by means of two different time-like congruences.

A second analogy arises by considering the generalized frames of reference and the
associated non-holonomic techniques; it can be shown that:

Proposition. From the description point of view, every superfluid is equivalent to a cosserat
continua.

From the dynamical point of view, instead, the equivalence between the two types of con-
tinuous systems, binary mixtures and Cosserat continua, involves other interesting points of
view and possible alternatives; anyway, here we will restrict our approach to the geometric-
kinematical aspects only.

2. Digression on the generalized frames of reference: Quasi-natural basis

Let us suppose the space—time V; to be provided with a fixed generalized frame of refer-
ence (I°, X), or in other words with two time-like vector fields (v, n) satisfying conditions
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(1) and (2); as in the ordinary case (1) absent) we furthermore assume the coordinates (x%)
to be adapted to the congruence I, in the sense that

v = yoeo, yo > 0.

Such coordinates are defined up to transformations x¢ — x® of the kind

W= xol(x). xi/ =xi/(x1,x2,,r3) (i=1273), (3)

where the functions on the right-hand side (which must be invertible) satisfy the conditions

ﬁ > 0, det E > 0, (4)
9.0 Ax!
which preserve the orientation in both time and space.

Transformations (3) constitute the fundamental continuous group associated to the frame
of reference, even if such a group depends only on the I” component.

Associated to the coordinates (x®) we have the natural (coordinate) basis {e,} and its
dual {e*}, which are non-adapted to the generalized frame of reference; it is convenient
instead to choose a non-holonomic distribution {€,} ~ (€%} adapted to (I, 5). Without
any loss of generality, we will assume the following quasi-natural distribution:

€ = . é,’ze,‘—ﬂ(‘,oe)_::. (5)

no

which is canonically associated to the coordinates (x*); ! for an arbitrary change of coor-
dinates (3), i.e. internal to the frame of reference, the following transformation law holds:

ax! .
= —‘/e
ax!

as it is typical for holonomic basis.

In the following, we will uniform the notation by adopting a “*” for all quantities relative
to X, in particular we write

€y = €y = inv., e i (6)

A def - ~ def - -
&§=e. p=v=~§, (7)

and denote by (€'} the dual basis of {&;} on ¥, which is characterized by the reciprocity
conditions

& € = 5;\ (8)
moreover we denote by ;i the induced metrics on h3¢

~ def ~ A
Yik = € - €, 9)

and by 7 the dual metrics, which necessarily is of the kind
pik =@l .k (10)

! An analogous distribution follows from the dual basis {€“}: &= ~ & =e¢ — (' /n")el.
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As for the metrics of V4, in non-holonomic terms, it is characterized by the products gog =
€ - €5:

goo = —1, goi = Vi, 8ik = Viks (1
where the components y;, given by the second equation in (7), coincide with the difference
of the two vector fields v and n:

Vi =Yi — i Yo — 10 =0. (12)
In contravariant form, (5) is equivalent to the following relations:

& =—p, &= (13)
we then have the dual metrics §*f = & - &#:

P=nn=-n P=-v F=y (14)
where the coefficients 2, ' and y'* are given by the formulae

”=0+9H7 ni =0l = piph (15)
in which 32 is the norm of the field 4 € X
v 7. (16)

~

Pt =iy

3. Commutation formulae and non-holonomy tensor. Jacobi’s identities

The non-holonomic distribution (5) gives rise to the following pfaffian derivatives

h=o=y'  f-o _m? a7
0=0=V 550 YT axt mpox0’
which only depend on the field 14, according to the choice of the coordinates: y° = —1/yy,
Yo = no.
Of course such derivatives do not commute:
(0> 0p] = Aap” 3, (18)

and the non-holonomy tensor Aaﬂp of the distribution (5) is non-vanishing.
More precisely, we have the following commutation formulae, like in the ordinary case:

[9,8i1= &9, [8;, k] =290, (19)
they involve two fundamental geometric ingredients of pok ¢, and Qik (skewsymmetric),
which have the usual expressions, except for « which is replaced by n:

o def = ni ~ def 1 =Mk z 1
&i = 8 log(—no) + mod—. 2 = 5mo (31'— - 3kﬂ> . (20)
170 2 uh)

Of course, we have not the usual geometric meaning, because C; coincides with the spatial
part(on X) of the Lie derivative of n along -~y [3, p. 75]; instead the tensor $2;; characterizes,
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by the condition Q,-k = 0 (not normal congruences I' any more, but), distributions {ﬁ' }
which are holonomic, i.e. tangent to a ool family of spatial manifolds V3 (i.e. Qik =0=
T = normal).

From the kinematical point of view, the tensor (c/n)f?,-k (or better its adjoint on ﬁ) can
still be interpreted as the proper vortex of the generalized continuum; however, such a vortex
defines the free angular velocity, which is typical of the cosserat continua. In other words,
ik is not determined by the field of the velocities of the continuum: V = ¢~y. which instead
gives a different angular velocity.

Anyway, in a generalized frame of reference, the field y; plays a fundamental role. in
fixing the spatial platform 2 of course y; is independent of the relative gravitational
potentials: ng < 0, n; and y;x, which generate, by derivation, the gravitational field (20)
and the deformation field: Kix e %8)7,*, respectively.

Moreover, from the relative point of view, also in a generalized frame of reference, the
effective gravitational potentials are nine (not 10); because in the general case, i.e. without
a priori hypothesis about the metric structure of Vj (stationariness, sphericity, etc.) one can
always suppose yo = —1 [1, p. 309].

However, different from the absolute formulation, the relative formulation of the gravita-
tional equations reduces the unknown quantities by one unity, like in the relative dvnamics
of particles with scalar structure mo ( proper mass), where the relative formulation depends
on seven essential variables: x', pi and mg, and not on eight as in the absolute formulation:
x%and P,.

In any case, for every non-holonomic distribution {e, }, we have not only the commutation
formulae (18), but also the Jacobi’s identities for the brackets [5(,. 5'{5]: so we can deduce
the following differential conditions for the non-holonomy tensor Aqp”:

dpAapl” — Avip” Aap)” = 0. 2h
In our case, according to (19), the only non-trivial components of the non-holonomy tensor
are: Agi = ; and A?k = 2f2,~k; so (21) is equivalent to the following conditions for the
fields C; and £2;;:

32 = 3 Cu). 3i 2k — C1i S2km) = 0. (22)

Of course (22) reduces to trivial identities if both the tensors C; and Q,-k are expressed in
function of the potentials 74, by means of relations (20).

4. Fundamental pfaffian derivatives and Ricci rotation coefficients

Let us now consider the derivatives of the fundamental fields €., in order to extend the
pfaffian operator d, to every tensor field; first of all we have

du€p = Rap’&p, (23)
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where ﬁaﬂp are the Ricci rotation coefficients associated to the assigned non-holonomic
distribution {€,} ~ {€“}. Such coefficients can be expressed in compact form, by means of
the Christoffel symbols and the non-holonomy tensor:

~ def 5o~ T~ - def .~

Faﬂ,a = %(aagﬂo + 3ﬂgaa - 3agaﬂ)» Aaﬂ o —e— 8opA aﬂ s (24)
indeed, the following general formula holds [3, p. 69]:

72az/ﬁfp = gpa[faﬂ,a + %(Aoa,ﬂ + Aaﬂ,o - A~ﬂo.a)]- (25)

Of course, we can also follow a direct way, explicitly deducing, by a geometrical approach,
the 0 and 5,- derivatives of the fields ~ and €;. In both the cases, we have the following
Sfundamental relations:

3y =C'@& +7iv), v =H*@&+ ),

K N - (26)
9¢; = H; & + K;~, & = Ru/ & + Rixv.
where the fields
c=¢%, HY Ak @7

summarize the curvature of the lines of I and the proper angular and deformation velocities
of the generalized frame of reference, respectively; instead the fields K; and R, have the
following form:

Ki=HB*n+ &, Rix = Hix — Vit (28)
with
def def ~ -

Hi E Hyji, Vik = Pik + Vi P (29)
where V; is the covariant extension of the pfaffan derivatives 8;, obtained by means of the
Ricci rotation coefficients R;i/, which are symmetric with respect to the indices i and k.

We notice that, except for the spatial field y;, both the ingredients K; and Ry are well
determined functions of the characteristic fields (27); indeed the following relation holds:

&i=Ci — 9y, where ¢; &y C*. (30)

Anyway, in (26), the geometric-kinematic meaning of the coefficients H;; and Rix’ is
not yet specified.

As for the field H;;, according to what is previously said, the two parts, skewsymmetric
Hiix) and symmetric H;y, have the meaning of total and proper angular velocity and
deformation rate, respectively; with a more complete meaning than in the ordinary situation.
Indeed we have the following expressions:

Hiiny = ik + VD, Hiw = Kt — Eatny,s (3D

which are more general than the usual ones; in particular we can see that the deformation
of the metric tensor y;, and the curvature vector of I' are combined, according to (30).
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It remains, at this point, only to specify the geometric meaning of the spatial rotation
coefficients R/ ; they can be related to the Christoffel symbols relative either to the metric
tensor y;x, or to the metrics y;; defined by the second equation of (29).

In the first case, we have the following expression:

Rit) =y Fixn — (Hix — 3:7%)7n + Dnir, (32)
where y /" is the reciprocal of yj, and Dy is defined as follows:
Dhik = Qnivk + Qixvn — Lendi. (33)

It is an expression in which the difference Rix! — ﬁkf is not invariant for transformations
(3), because of the presence of the derivatives ;7. A more significant expression is the
following:

Rix! = Nl + Die | (34)
by means of the the Christoffel symbols associated to the metric tensor y;y:

Cdef | in, s « < ,
T = 3y 7" @iven + dvni — Invie) (35)

and of the field:

: def ; . R R
D/ S — y"(Huyon + Hyn¥i — Hinilve)- (36)

We notice that the last, which is a well-determined function of the metric tensor y;x, H;
and 7;, has now tensorial character.
In conclusion, the Ricci rotation coefficients are:

~ ~

Roo’ =Cpi, Roo' =C', Rio® = H* i, ﬁiQk = quk = I:I,:k,
i+ H v, Ru® = Hi = Vitk.  Rud = T/ + Dy,

(37

where Hj; is given by (29) and the Ricci spatial coefficients ﬁikj can be alternatively
expressed by (32).

Of course, as for an ordinary frame of reference, where y; = 0, also in the general
case the transformation law (6) influences all the successive non-holonomic developments.
Therefore, the considered non-holonomic formalism, and the relative geometric-kinematical
ingredients, are all invariant for transformations internal to the frame of reference (3), i.e.
for arbitrary changes of spatial coordinates and of temporal flow.

5. Kinematical characters of a superfluid

The generalized frame of reference (I, ), previously considered, is equivalent to a
couple of ordinary frames: I" and r, respectively, characterized by the flux lines of the
two unitary fields v and 4 = 77/n. Therefore, such lines constitute the space—time evolu-
tion of a binary fluid mixture, briefly, a superfluid. From this analogy, it follows that the
non-holonomic techniques, previously developed, allow to deduce the geometric-kinematic
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characters of a superfluid, i.e. the relations between the first order differential characters of
the frames I" and I

Of course, the comparison of the two frames is subordinated to the following two general
propetrties:

(a) every non-holonomic basis adapted to the generalized frame of reference (I, ) gives,
by duality, a basis adapted to the complementary reference (y, X'); in other words,
locally, the basis {€,} and {€*} are adapted to the two distinct frames, respectively;

(b) every tensor of by defines an analogous tensor in X' and vice versa, i.e. the correspon-
dence is biunique; for instance, if we consider the covariant representation, the relative
components of the tensor can be interpreted either in SorinX, referring to the basis
{é;} or (&), respectively.

We notice that the preceding correspondence between the two platforms S and £ is
invariant for transformations (3); however, it has no isometric character.
Let us now consider the gradient of ~:

Vy = (Hi + 7iCO¥ @& —y® C, (38)

and therefore, the tensor H;y + y;Cy € X summarizes proper deformation and angular
velocity of the frame of reference I". According to formulae (30) and (31), we have explicitly

- = R def
kiv = cKix, o = c(Qix + Vit + MiCr)s Kk = %ayik, (39)
where the following invariance properly holds:
Hiy = Kik = Civi = Kik = CiPoy- (40)
Of course, an expression analogous to (38) holds for the gradient of %:
R
V4 = ;R,-ke’ & -4C, 41

where the field C is the curvature vector of the lines of I
C = (Ci + H* 9 — 0y — P Rup)¥, (42)
therefore, the first order characters of the frame of reference I are the following:

Ci = Ci + X" Hix — Hy + Vip) — 89;, 4
k¥ = (c/m(Kik — Civry — Vivi). Bik = (¢/m)S2ik. )
Such characters are expressed in terms of the fundamental tensors C;, .Q,-k and K;; and the
vector y;, which characterizes the difference between the rtwo different platforms Yand T
the same ingredients which are present in formula (39), relative to the frame I".
Therefore, by elimination, we can deduce the relations between the characters of the

frames [ and I [6]:

Ci = Ci — 39 + P Hix — Hii + Vi),

S= £ 44
kik + i = (/M) (Hix — Vive), “4)



G. Ferrarese/Journal of Geometry and Physics 23 (1997) 247-258 255
where the tensor H;y, defined by (31). is expressed, according to (39), by
Hii = (1/c)(kix + wix) — 7iCk. (45)

Eqs. (44) give quite general formulae, in the sense that they hold for every couple of reference
frames. i.e. for everv surperfluid;, moreover this is a typical relativistic coupling berween
the different components of the superfluid.

Of course the reciprocity principle also holds. with respect to the exchange of the two
congruences I” and I which, according to (12), involves the exchange of y; with —y;.

6. Isometric overlap of SonX

To compare the platforms X and X, let us briefly examine induced basis and metrics on
the two platforms from the non-holonomic distribution considered. In 5 we directly have
the induced basis &; = & and the corresponding metrics P;x, as well as their dual & and p*.

As for X', we must start from the vectors {€}, in the sense that ¢ =¢ represent the
induced basis in X, and so y'¥ are the corresponding metrics; subsequently, by duality in
X, we can reproduce the basis e; and the metrics y;«. The following fundamental relations
hold:

& =¢—pn & =e — Vv, (46)
and for the two metrics of X and X we have, respectively,
Yik = Vik + Yivk, y* =9k —nPpiph, ”=0+pH7" (47)
Let us now consider the isometric overlap of S on X, ie. the correspondence between
vectors of the platforms ¥ and ¥ which preserves the scalar product (it is a local rotation).
It suffices to define, in X, the vectors corresponding to the basis €; € X', which we denote
by d,‘Z

~

d;, = Me; =¢; + —"_nyi (v + '3’), (48)
l+n
the following general formula holds:
k 0’ k
d; =\8"———py . (49a
( i T+7 Yiy ) €; )
and conversely
e = (85" + —n—?i);k> dg. (49b)
I1+17

We thus obtain, on the X platform, a second basis {d;} coming from 3 and in one-to-one
correspondence with the pre-existing basis {e; }; on the other hand, the rotation % (with the
2-plane >N X fixed) preserves the metrics, i.e. we have the equality

d; -dp =& - & =y, (50)
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such that X is provided with two different metrics: y;; and ¥, the first natural and the
second induced from X by rotation.

Formula (49a) has a precise kinematical meaning with respect to the motion of the
continuum I, relative to the frame T". More precisely, by (12) we first deduce the following
relation between the vectors 77 and ~y:

n=v- e 51)

therefore, denoting by V= ¢ = cn/n the local 4-velocity of the continuum I", we have
the following decomposition:

N 1 .
V = —(cvy — cy;¢e’).
n

So we have the velocity relative to I": u, and the kinematical meaning of the scalar 7:

u=—cye, n=+/1—u2/c? (52)

and (49a) also takes a kinematical meaning

1w def

d":ei_c_zmu’ U = u-¢,

by means of the relative velocity u. This is a formula which has a perfect analogous in
special relativity, where, more generally, we can consider the motion of a continuous system
with respect to two different Galileian frames of reference; of course, in our case the
continuous system coincides with I” (rest frame of reference) and therefore v = 0.

We notice that formula (49a), which simulates the vectors €; in X', gives us the possibility
to examine the two fundamental aspects of the relative kinematics of a scalar particle, i.e.
the transformation law of velocity and acceleration in a change of reference frame: theorems
of the relative motion and Coriolis; we must decompose 4-velocity and 4-acceleration of
the particle according to (y, X) and (¥, ), respectively, and then the platform 5 must be
rotated to overlap on X, according to (48).

Formula (48) is also fundamental for the deformation kinematics of relativistic continua,
because the relative angular and deformation velocities are combined with the space—time
derivatives of the vectors d; and e;.

7. Superfluids and Cosserat continua

What we have seen in Section 6, clearly shows the role of the trihedron {d;} € ¥, in
order to specify either the metrics ;4 or the same platform X, which is determined moving
backwards, i.e. by antirotating £ on X, according to (51) and to the converse of (48):

n . | S N
& =di — Py + ——vine =& — P (53)
1+7
Therefore, the congruence I can be completely characterized, for metrics and position, in
the framework of I", by means of the fundamental trihedron {d;} € X.
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Therefore, every superfluid S can be described, in the traditional way, within the frame
of reference I, although I" represents only one of the two components of §; we can take
into account the second component ( platform ¥ and metrics Vik) by associating to X a
determined deformable trihedron {d;}, depending on the spatial vector y;, according to
(49a).

From this point of view, a superfluid becomes a continuous system with internal structure
of cosserat type, in the sense that every binary mixture can be described by means of only one
of the components, for instance I', provided I" has, at every point, a determined trihedron
{d;} € X normal to I", whose motion is independent of the congruence I.

Of course, the trihedron d; arises in a natural way from the non-holonomic distribution
(5). and therefore it depends on the coordinates (x*) chosen, which are adapted to I
therefore {d;} is not unique, but defined up to an arbitrary internal transformation, since it
satisfies the holonomic transformation law (second equation of (6)):

d ox!
oaxt
where the coefficients are time-independent, as in the classical situation.

However, while in the classical case trihedron {d;) can be supposed orthonormal, since
it summarizes a rigid structure [8), in the relativistic framework the deformability of the
trihedron is a typical feature which cannot be removed by means of internal transformations,
neither globally, nor locally (within some domain).

When compared with a cosserat continuum, a superfluid appears to have easier dynamical
extensions; of course the trihedron (d;}, or its dual on X: d' — p'kdy, plays a leading
role, since every tensorial ingredient is decomposed according to -~ and d;: inertial and
gravitational forces, stress and couple stress, etc.

In particular, the time derivative ad;, or better the constrained derivative (see [1, p. 157]),
gives the angular and deformation velocities of the trihedron, which are related to the proper
ingredients of the continuum I".

However, while the analogy between superfluids and cosserat continua, from the kine-
matical point of view, has univocal character, the dynamics of superfluids can be developed
from two different points of view. The first way, assuming the usual evolution equations for
both the components, is immediate:

d;. (54

VT =0, VT =0, (55)
where the energy tensors T* and T are of fluid type:
1
T = 4o Vev»28 + po <g°‘ﬁ + C—zvavﬂ>,
N ~ A | RPN
T = VeV + po (g"ﬂ + —zvavﬂ), (56)
¢

and then translating the equations in terms of cosserat; i.e. decomposing with respect to ~y
and the trihedron d; and taking into account that V' = O for the first fluid, while V # 0 for
the second.
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If the mixture is not a test system, but generates a gravitational field, we must add to (55)
the Einstein equations

Gap = — X (Tup + Tup). (57)

The second point of view is based on a preliminary hypothesis, namely that the analogy
between superfluids and cosserat continua is also of dynamical type, in the sense that, for
both the systems, the same equations hold.

In this case, the dynamics of a mixture is not any more governed by (55), but by the
general equations of relativistic polar continua [2], which still constitute two groups of
condition (for resultants and couples, respectively).

Of course, in this framework, it is not possible to develop the gravitational coupling
by means of (57), because cosserat continua are described by two energy tensors, like the
gravitational field (forces and couples); therefore the Einstein gravitational equations must
be suitably modified.
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