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Abstract 

We use a generalized frame oj’ reference in the polar sense and the connected non-holonomic 
techniques to study superfiuids in gene& relativity and obtain aprecise anulog~ hetbtwn .supwflnid.\ 
und Cosserut continun, from both the descriptive and the structural points of view. 
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1. Introduction 

In general relativity the standard notion of frame of reference is generally assumed to be 
a local orthogonul 1 x 3 structure (1 = time and 3 = space) (see [ 1, Chap. IV]). so that 
it is characterized by a unit time-like vector field y or by the congruence of its tlow lines 

1-. 

From a kinematical point of view, r defines a stcmdard continuum, whereas the space- 
time gradient of y summarizes its three fundamental characters: c’C; (4-acceleration), to,/; 
(proper vortex) and kik (proper deformation rate). 

The preceding characterization can be generalized, in a natural way, according to the 
theory of polar continua [2], by considering a local non-orthogonul I x 3 structure. More 
precisely, in this context, the space-time is supposed to be provided with two independent 
geometrical ingredients: 
(i) a time-oriented congruence f, with a unitary tangent vector field y: 

y.y=--1. (I) 
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(ii) a space-like distribution of 3-planes: 2, non-orthogonal to y, namely a second time- 
like vector field q (tangent to the normal congruence to such 3-planes) which, without 
any loss of generality, can be chosen so that 

y.q=-1. (2) 

The (r, 2) non-orthogonal quasi-product structure can be introduced, more generally, 
directly in a (non-Riemannian) d@erential manifold, by means of two vector$elds - one 
contravariant: yLy and the other covariant: ncu, both defined up to a multiplicative scalar 
factor and the condition: yana # 0 [3]. However, the most interesting situations belong to 
the Riemannian case. 

Examples of this structure occur, for instance, in the ordinary three-dimensional space 
when one studies the problem of the evolution of a surface (wave) with the associated rays, 
generally non-orthogonal to the wavefronts, as well as in the dynamics of a holonomic 
system, with time-dependent constraints. Here in fact the events space, En+, , is naturally 
provided with the non-orthogonal structure, defined by the temporal lines x0 = var. and 
the n-manifolds x0 = const., respectively [4]. Of course, in both the considered cases, the 
k-distribution is integrable, and the framework is non-relativistic. 

Condition (2) does not exclude the possibility of isotropy for the field Q: 77. 77 = 0 (null 
congruence), a case in which, for every point E E V4, the 3-plane 2 is tangent along v to 
the light cone. 

Therefore, the structure of generalized frame of reference can be used also to study null 
congruences: now the field q defines the frame of reference in the standard sense, and, in 
addition, we have a light-likefield 1 = rl, with the relative normal 3-plane 2, of parabolic 
type, containing the vector 1 (see [S]). However, the lines of the field 77 constitute a second 
time-like congruence f, different from f; so, at least from the descriptive point of view, 
we have ajrst analogy between generalizedframes of reference and super&ids or binary 
jh.4id mixtures, described by means of two different time-like congruences. 

A second analogy arises by considering the generalized frames of reference and the 
associated non-holonomic techniques; it can be shown that: 

Proposition. From the description point of view, every superfluid is equivalent to a cosserat 
continua. 

From the dynamical point of view, instead, the equivalence between the two types of con- 
tinuous systems, binary mixtures and Cosserat continua, involves other interesting points of 
view and possible alternatives; anyway, here we will restrict our approach to the geometric- 
kinematical aspects only. 

2. Digression on the generalized frames of reference: Quasi-natural basis 

Let us suppose the space-time V4 to be provided with a fixed generalized frame of refer- 
ence (f, i), or in other words with two time-like vector fields (y, 17) satisfying conditions 
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(1) and (2); as in the ordinary case (77 absent) we furthermore assume the coordinates (x”) 
to he adapted to the congruence r, in the sense that 

Y = yOeO, y” > 0. 

Such coordinates are defined up to transformations x” + ,P of the kind 

x0’ = x0’(x). xi’ = x”(xt. x2, x3) (i = 1,2.3). (3) 

where the functions on the right-hand side (which must be invertible) satisfy the conditions 

(3) 

which preserve the orientation in both time and space. 
Transformations (3) constitute thefundamental continuous group associated to the frame 

of reference, even if such a group depends only on the r component. 
Associated to the coordinates (x”) we have the natural (coordinate) basis {e,) and its 

dual (e”], which are non-adapted to the generalized frame of reference; it is convenient 
instead to choose a non-holonomic distribution {e,) - (6”) adapted to (f, C). Without 
any loss of generality, we will assume the following quasi-natural distribution: 

which is canonically associated to the coordinates (x*); ’ for an arbitrary change of coor- 
dinates (3). i.e. internal to the frame of reference, the following transformation law holds: 

_ _ 
euc = eu = inv., 

ax’ _ 
eir = gei, 

as it is typical for holonomic basis. 
In the following, we will uniform the notation by adopting a “̂ ” for all quantities relative 

to 2, in particular we write 

def _ 7; = yi E y . ei, (7) 
. 

and denote by (6’ ) the dual basis of {ii ] on C, which is characterized by the reciprocit? 
conditions 

6’ .&I, = s;, (8) 

moreover we denote by ljik the induced metrics on 2: 

fik d”’ ei &, (9) 

and by Tik the dual metrics, which necessarily is of the kind 

-ik 
Y =ki.@. (10) 

’ An analogous distribution follows from the dual basis (6"): 15' = y. i' = e; - (q’ /q”)eo 
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As for the metrics of VA, in non-holonomic terms, it is characterized by the products &I = 
e, .2jj: 

go0 = -1, xoi = f;, gik = ?ik, (11) 

where the components pi, given by the second equation in (7), coincide with the difference 
of the two vectorhelds y and 77: 

^ 
I/i = Yi - Vi, M - rlo = 0. (12) 

In contruvariant~form, (5) is equivalent to the following relations: 

60 = -77, ei = ei; (13) 

we then have the dual metrics g”@ = 6” . iip : 

-00 
I: =7pp-q*, z-qi, ‘ioi iik = Y’“, (14) 

where the coefficients n*, q’ and vlk are given by the formulae 

n* = (1 + j+‘, rli = _v2pi, yik = pik _ #);k, (13 

in which f2 is the norm of thejeld + E 2: 

~2 = fjf’ _ fik;ifk. (16) 

3. Commutation formulae and non-holonomy tensor. Jacobi’s identities 

The non-holonomic distribution (5) gives rise to the following ~faf~ian derivatives a,: 

(17) 

which only depend on thejield nU, according to the choice of the coordinates: y” = - I/ yu, 

YO = no. 
Of course such derivatives do not commute: 

[a,, as] = A,&, (18) 

and the non-holonomy tensor i?,bP of the distribution (5) is non-vanishing. 
More precisely, we have the following commutation,formulae, like in the ordinary case: 

[a, Zi] = (?;a, [ai, ak] = 2fiik8, (19) 

they involve two fundamental geometric ingredients of 2: Ci and fiik (skewsymmetric), 
which have the usual expressions, except for y which is replaced by 7: 

e. dzf a. log(-~o) + noa% I I 
170 ’ 

Jjik d&r 1,, 
2 ( 

&lk _ Sk? . 
’ 110 rlo > 

(20) 

Of course, we have not the usual geometric meaning, because c; coincides with the spatial 

part (on 2) ofthe Lie derivative of v along y [3, p. 7.51; instead the tensor fiik characterizes, 
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by the condition fi,k = 0 (not normal congruences r any more, but), distributions (k} 
which are holonomic, i.e. tangent to a co’ family of spatial manifolds V3 (i.e. b;k = 0 * 
f = normal). 

From the kinematical point of view, the tensor (~/q)fi;k (or better its adjoint on J?) can 
still be interpreted as the proper vortex of the generalized continuum; however. such a vortex 
defines the,free angulmr velocity, which is typical of the cosserat continua. In other words. 
Sii, is not determined by thejeld of the velocities of the continuum: V = ~7. which instead 
gives a different angular velocity. 

Anyway, in a generalized frame of reference, the field f; plays a fundamental role. in 

fixing the spatial platform 2’; of course pi is independent of the relative gravitationul 
potentials: ~0 c 0, vi and yi/ik, which generate. by derivation, the gravitational,firld (20) 

and the dlfi,rmation$eld: iik drf iaf;;ik, respectively. 
Moreover, from the relative point of view, also in a generalized frame of reference, t/w 

@ective gruvitational potentials are nine (not 10); because in the general case. i.e. without 
a priori hypothesis about the metric structure of V4 (stationariness. sphericity, etc.) one can 
always suppose ~0 = -1 [I, p. 3091. 

However, different from the absolute formulation, the relative,fonnulation ofthe gravit(l- 
tionul equations reduces the unknown quantities b_v one unity, like in the relative d~numicx 
ofparticles with scalar structure mg (proper muss). where the relative formulation depends 
on Seven essential variables: xi. pi and mg, and not on eight as in the absolute formulation: 
.P and Pa. 

In any case, forevery non-holonomic distribution (Cay), we have not only the commutation 
formulae (I 8). but also the Jacobi’s identities for the brackets [$._$p]; so we can deduce 
the following differential conditions for the non-holonomy tensor A,pJ’: 

&A,bla - A,,,,DA,B,” = 0. (21) 

In our case, according to (19), the only non-trivial components of the non-holonomy tensor 
are: i:i = ti and Ayk = 2fiik; so (21) is equivalent to the following conditions,for the 

1 
fields CEi and fiik: 

(22) 

Of course (22) reduces to trivial identities if both the tensors Ci and fi;iik are expressed in 
function of the potentials qcy, by means of relations (20). 

4. Fundamental pfaffian derivatives and Ricci rotation coefficients 

Let us now consider the derivatives of the fundamental fields C,, in order to extend the 
pfaffian operator & to every tensor field; first of all we have 

a,e, = R,/ype,, (23) 
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where I&+’ are the Ricci rotation coefJicients associated to the assigned non-holonomic 
distribution (i&} - (6”). Such coefficients can be expressed in compact form, by means of 
the Christoffel symbols and the non-holonomy tensor: 

indeed, the following generalformula holds [3, p. 691: 

(25) 

Of course, we can also follow a direct way, explicitly deducing, by a geometrical approach, 
the a and & derivatives of the fields y and 5i. In both the cases, we have the following 
fundamental relations: 

a7 = i?‘(ii + fir), $7 = fiik(& + j4;ky), 
a&i = gik6k + fir, ai6k = *ikjGj + kJiik7, 

(26) 

where the fields 

c ZZ &, Hi d&f fiikck (27) 

summarize the curvature of the lines of r and the proper angular and deformation velocities 
of the generalized frame of reference, respectively; instead the fields ZTi and &k have the 
following form: 

ii = fiikfk + ci, $!ik = Hik - Gi& (28) 

with 

Hik dAf $yjk, yjk d&f pjk + fjfk, (29) 

where Oi is the covariant extension of the pfaffan derivatives St, obtained by means of the 
Ricci rotation CoefJicients %$kj, which are symmetric with respect to the indices i and k. 

We notice that, except for the spatial field pi, both the ingredients ii and %$k are well 
determinedfunctions of the characteristicfields (27); indeed the following relation holds: 

(Ei = Ci - i3fi, where Ci dAf Yik(?‘. (30) 

Anyway, in (26), the geometric-kinematic meaning of the coefficients Htk and 7&k’ is 
not yet specified. 

As for the field Hik, according to what is previously said, the two parts, skewsymmetric 
H[tk] and symmetric H(ik), have the meaning of total and proper angular velocity and 
deformation rate, respectively; with a more complete meaning than in the ordinary situation. 
Indeed we have the following expressions: 

Hlikl = fiik + G[i?kk], 
fi 

H(ik) = Kik - c(ifk)t (31) 

which are more general than the usual ones; in particular we can see that the deformation 
of the metric tensor pi& and the curvature vector of r are combined, according to (30). 
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It remains, at this point, only to specify the geometric meaning of the spatial rotation 
coefficients 7&kj; they can be related to the Christoffel symbols relative either to the metric 
tensor fi;ik, or to the metrics Yik defined by the second equation of (29). 

In the first case, we have the following expression: 

e;kJ = yjh[fik,h - (Hik - si&))% + fi)hik], 

where yjh is the reciprocal of Yjh and fi)hik is defined as follows: 

(32) 

. ^ L ^ 
Dhik = fihifk + Dik);h - flkh);1. (33) 

It is an expression in which the difference kik j - fikj is not invariant for transformations 
(3), because of the presence of the derivatives ai fk. A more significant expression is the 
following: 

(34) 

by means of the the Christoffel symbols associated to the metric tensor yik : 

(35) 

and of the field: 

Dik.i d&f _ jh H Y ( (tk)Ph + ff[khjfi - ff[hi]fk). (36) 

we notice that the last, which is a well-determined function of the metric tensor Yik, Hik 

and fi, has now tensorial character. 
In conclusion, the Ricci rotation coefficients are: 

$&,o = &, $&,,i = ti, 7iioo = &kfk, $jiok = Gik = &k, 

17io;’ = ?i + fiik?&, eik” = Hik - $ifk, %?,ikj = &j + Dikj, 
(37) 

where Hik is given by (29) and the Ricci spatial coefficients &kj can be alternatively 
expressed by (32). 

Of course, as for an ordinary frame of reference, where fi = 0, also in the general 
case the transformation law (6) intluences all the successive non-holonomic developments. 
Therefore, the considered non-holonomicformalism, and the relative geometric-kinematical 
ingredients, are all invariant for transformations internal to the frame of reference (3), i.e. 
for arbitrary changes of spatial coordinates and of temporaljow. 

5. Kinematical characters of a superfluid 

The generalized frame of reference (r, c), previously considered, is equivalent to a 
couple of ordinary frames: r and ?, respectively, characterized by the flux lines of the 
two unitary fields y and 5 = q/q. Therefore, such lines constitute the space-time evolu- 
tion of a binary Jluid mixture, briefly, a supe$uid. From this analogy, it follows that the 
non-holonomic techniques, previously developed, allow to deduce the geometric-kinematic 
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characters ofa superfluid, i.e. the relations between the first order differential characters of 
the frames f and f. 

Of course, the comparison of the two frames is subordinated to the following two general 
properties: . 
(a) every non-holonomic basis udupted to the generulized,frume of reference (f, C) gives, 

by duality, a basis adapted to the complementary reference (f , C); in other words, 
locally, the basis {&) and (6”) are adapted to the two distinct frames, respectively; 

(b) every tensor of 2 defines an analogous tensor in C and vice versa, i.e. the correspon- 
dence is biunique; for instance, if we consider the covariant representation, the relative 
components of the tensor can be interpreted either in i or in E, referring to the basis 
(ei) or {e’), respectively. 

We notice that the preceding correspondence between the two platforms _I? and C is 
invariant for transformations (3); however, it has no isometric character. 

Let us now consider the gradient of y: 

VT = (Hik + fiCk)G’ @ ek - 7 @ C, (38) 

and therefore, the tensor Hik + pick E z summarizes proper deformation and angular 
velocity of the frame of reference r. According to formulae (30) and (3 1 ), we have explicitly 

kik = CKik, wik = C(Gik + G[ifk;kl + fiick]), Kik dz iavik, 

where the following invariance properly holds: 

H(ik) = iik - ?(i j&j = Kik - C(i ?&). 

Of course, an expression analogous to (38) holds for the gradient of ;/: 

v;J = $&o @ ik - $I @ c, 

where the field e is the curvature vector of the lines of f: 

therefore, thejrst order characters of the frame of reference f are the following: 

Ci = Ci + fk(q2Hik - Hki + ?k??i) - api, 

iik = (c/V)(Kik - c(ipk) - o(iTk;k))q &ik = (C/q)fiik. 

(39) 

(40) 

(41) 

(42) 

(43) 

Such characters are expressed in terms of the fundamental tensors Ci , fi;iik and Kik and the 
vector I;i, which characterizes the di@erence between the two d@erent platforms J$ and C; 
the same ingredients which are present in formula (39), relative to the frame r. 

Therefore, by elimination, we can deduce the relations between the characters of the 
frames f and r [6]: 

Ci = Ci - a>;i + pk(Tj2Hik - Hki + ?kpi), 

f&k +&k = (C/rI)(Hik - ei?k;k)t 
(44) 
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where the tensor Hik, defined by (31). is expressed, according to (39), by 

Hik = (l/c)(kik + Wik) - Ij,Ck. (45) 

Eqs. (44) give quite general formulae, in the sense that they holdfor ever?, couple of reference 
frames. i.e. for e\ier?, surper-uid; moreover this is a typical relativistic coupling between 
the dijferent components of the super-uid. 

Of course the reciprocity principle also holds. with respect to the exchange of the two 
congruences r and f which, according to (12), involves the exchange of p; with -7,. 

6. Isometric overlap of 2 on C 

To compare the platforms .!? and C, let us briefly examine induced basis and metrics on 
the two platforms from the non-holonomic distribution considered. In 2 we directly have 
the induced basis Ci = Ci and the corresponding metrics fik, as well as their dual ii and frk. 

As for C, we must start from the vectors (PY), in the sense that iS’ F ei represent the 
induced basis in C, and so y ik are the corresponding metrics; subsequently, by duality in 
C, we can reproduce the basis ei and the metrics Yik. The following,fundamentaf relations 
hold: 

6’ = e’ _ FiQ. Ci = e; - y;y, 

and for the two metrics of C and 2 we have, respectively, 

(46) 

^ I ,. 
l’ik = Yik + ?‘iYk, 

ik = -ik 
Y Y _ $pifk. 7+ G (1 + )P-1. (47) 

Let us now consider the isometric overlap of l? on C, i.e. the correspondence between 
vectors of the platforms .J? and 2 which preserves the scalarproduct (it is a local rotation). 
It suffices to define, in C, the vectors corresponding to the basis i; E 2, which we denote 
by di : 

the following general,formula holds: 

d; = 

and conversely 

ei = (4%) 

We thus obtain, on the _?Z platform, a second basis {di) coming from 2 and in one-to-one 
correspondence with the pre-existing basis (ei); on the other hand, the rotation !H (with the 
2-plane .Z? n .X fixed) preserves the metrics, i.e. we have the equality 

di dk = ii 6k = fik, (50) 
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such that .E is provided with two dczerent metrics: Yik and pik, the first natural and the 
second induced from J? by rotation. 

Forwtula (49a) has a precise kinematical meaning with respect to the motion of the 
continuum f, relative to the frame f. More precisely, by (12) we first deduce the following 
relation between the vectors q and y: 

q=y-);ie’, (51) 

therefore, denoting by q = CT = q/r] the local 4-velocity of the continuum f’, we have 
the following decomposition: 

ii = {(‘y - cfie’). 

So we have the velocity relative to r: u, and the kinematical meaning of the scalar q: 

U = -&e’, Tj== J1_lr”lr?; 

and (49a) also takes a kinematical meaning 

(52) 

1 Llj 
di=ei---u def 

c*1+q ’ 
Uj = U.ei, 

by means of the relative velocity u. This is a formula which has a perfect analogous in 
special relativity, where, more generally, we can consider the motion of a continuous system 
with respect to two different Galileian frames of reference; of course, in our case the 
continuous system coincides with r (restframe of reference) and therefore v = 0. 

We notice that formula (49a), which simulates the vectors & in C, gives us the possibility 
to examine the two fundamental aspects of the relative kinematics of a scalar particle, i.e. 
the transformation law of velocity and acceleration in a change of reference frame: theorems 
of the relative motion and Coriolis; we must decompose 4-velocity and 4-acceleration of 
the particle according to (y, C) and (T, _J?), respectively, and then the platform J? must be 
rotated to overlap on C, according to (48). 

Formula (48) is also fundamental for the deformation kinematics of relativistic continua, 
because the relative angular and deformation velocities are combined with the space-time 
derivatives of the vectors di and e; . 

7. Superfluids and Cosserat continua 

What we have seen in Section 6, clearly shows the role of the trihedron {di] E C, in 
order to specify either the metrics pi;ik or the same platform 2, which is determined moving 
backwards, i.e. by antirotating 2 on I?‘, according to (5 1) and to the converse of (48): 

,. A 
1 

ei = di - Vi7 + 1 + rl -pi&ek f ei - pi;ir. 

Therefore, the congruence p can be completely characterized, for metrics and position, in 
the framework of r, by means of the fundamental trihedron (di} E .E. 
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Therefore, every superfluid S can be described, in the traditional way, within the frame 
of reference f, although r represents only one of the two components of S; we can take 
into account the second component (platform J? and metrics ftk) by associating to C a 
determined deformable trihedron (d;}, depending on the spatial vector f;, according to 
(49a). 

From this point of view, a superfluid becomes a continuous system with internal structure 
of cosserat type, in the sense that eveq binary mixture can be described by means ofonly one 
of the components, for instance r, provided r has, at evep point, a determined trihedron 
(di) E C normal to r, whose motion is independent of the congruence r. 

Of course, the trihedron di arises in a natural way from the non-holonomic distribution 
(5), and therefore it depends on the coordinates (x~) chosen, which are adapted to r: 
therefore (di] is not unique, but defined up to an arbitrary internal transformation, since it 
satisfies the holonomic transformation law (second equation of (6)): 

’ i 
dj = $d;. (54) 

where the coeficients are time-independent, as in the classical situation. 
However, while in the classical case trihedron {di ] can be supposed orthonormal, since 

it summarizes a rigid structure [8], in the relativistic framework the deformability of the 
trihedron is a Qpicalfeature which cannot be removed by means of internal transformations, 
neither globally, nor locally (within some domain). 

When compared with a cosserat continuum, a superfluid appears to have easier dynamical 
extensions; of course the trihedron {di}, or its dual on C: d’ - pikdk, plays a leading 
role, since every tensorial ingredient is decomposed according to y and di: inertial and 
gravitational forces, stress and couple stress, etc. 

In particular, the time derivative adi, or better the constrained derivative (see [ 1, p. 157]), 
gives the angular and deformation velocities of the trihedron, which are related to the proper 
ingredients of the continuum r. 

However, while the analogy between superfluids and cosserat continua, from the kine- 
matical point of view, has univocal character, the dynamics of superfluids can be developed 
from two different points of view. The first way, assuming the usual evolution equations,for 
both the components, is immediate: 

V TUB=0 P ’ v Tfffl=O B ’ 

where the energy tensors T@ and ?fi are ofjuid type: 

(55) 

and then translating the equations in terms of cosserat; i.e. decomposing with respect to y 
and the trihedron di and taking into account that Vi = 0 for the first fluid, while c # 0 for 
the second. 
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If the mixture is not a test system, but generates a gravitational field, we must add to (55) 
the Einstein equations 

(57) 

The second point of view is based on a preliminary hypothesis, namely that the analogy 
between superjkids and cosserat continua is also of dynamical type, in the sense that, for 
both the systems, the same equations hold. 

In this case, the dynamics of a mixture is not any more governed by (55), but by the 
general equations of relativistic polar continua [2], which still constitute two groups of 
condition (for resultants and couples, respectively). 

Of course, in this framework, it is not possible to develop the gravitational coupling 
by means of (57), because cosserat continua are described by two energy tensors, like the 
gravitational field (forces and couples); therefore the Einstein gravitational equations must 
be suitably modified. 
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